全氮阴离子盐 什么是阴离子盐
妙笔生花
我国幅员辽阔是世界上少有的拥有多种地形地势的国家,而正因为各种独特的地形地貌也使得我国储藏着丰富的资源。但是我国同时也是一个消耗大国对于很多资源的消耗速度都十分的恐怖,因此我们国家一直都在加大对资源的勘测力度。而在前几年我国就在西北地区的柴达木盆地发现了惊人储量的金属盐资源,一时间引起了很大的轰动,这意味着能为我国的化工、军工等行业带来足够的后勤保障。
一直以来柴达木的盐湖都十分出名,也是它的代表特色之一,不仅数量众多最主要的是里面含有大量的金属盐诸如:钠盐、镁盐、钾盐等等。这些大多都是工业所需的原料,具有很大的开发价值,完全满足一定时间内国防工业和民生企业的需求。如此富饶的资源储量可以说是来自大自然对我国的恩赐,其价值不可估量。
中美科学家几乎同时在超高能含能材料上实现了突破,中国科学家首次合成全氮阴离子盐,美国科学家合成了金属氢。这两项成果都发布在了国际顶级期刊《科学》杂志上,两颗高科技“大礼花”的出现,又恰逢中国春节,似乎是给中国人的传统新春佳节一起献上祝福。
这两则关于高能材料的新闻都显得极其“爆炸”,无论是材料的爆炸力还是新闻本身的爆炸性。
我国在唐代就已经发明了火药(黑色炸药),到宋代时,炸药已经应用在战争上,从此以后,这种“砰砰砰”的东西就成了人类这个“地球熊孩子”的玩具,虽然多少人在战争中因为它而殒命,但是炸药在人类生产生活中又起到了大量有益的作用,可谓是一把“双刃剑”。-
自炸药界“泰斗”诺贝尔发明可以稳定的真正“炸药”之后,人类已经不满足于对自然界产物混合制取黑火药的玩法。解析爆炸原理,利用科学手段制取自己所需要的炸药成分,目标就是爆炸更快,威力更高,破坏更强的炸药。
作为炸药,其威力来源于分子之间化学键断裂产生的能量。无论是构成分子的原子成分,还是分子之间组成结构的形式都对炸药的威力有所影响。
在深入到这一阶段后,爆炸世界内就产生了多个“门派”,而全氮阴离子盐和金属氢,就分别是其中两大门派的顶级之作。
全氮阴离子盐出身“化学流派”,全氮类物质门,化学流派追求通过化学手段,合成具备高能化学键的新物质来达成能量的猛烈释放。因为氮气化学键的性质,现有的炸药中的氮含量对能量强度有不小的影响,炸药的含氮量是用来衡量炸药能力的一项重要指标。那么由全氮构成的炸药威力如何呢?全氮阴离子盐的合成不亚于该神兵铸成,是足够大书特书一笔的。
全氮炸药中也有以高压压力获得聚合氮物质的思路,金属氢想要走出实验室真正在工程上实现,也需要化学方法的辅助。这些高能含能材料未来将在炸药,发射药,火箭推进剂等方面大放异彩。
从黑火药、TNT、到现在的黑索金、奥克托今炸药,炸药的爆炸威力基本是由爆能,爆压,爆速等多个指标衡量的。
此次南京理工大学首次合成的全氮阴离子盐N5-,是全氮类高能材料中重要的前体物质。从N3至N13一系列全氮衍生物一直是科学家们追求的高能材料,这种材料的爆炸能量达到TNT炸药的3-10倍,爆速从9000米每秒提升到14000米每秒以上,爆压从30至40吉帕提升到90吉帕。
可能有人会觉得3倍爆炸能量不是什么大的提升,但其实TNT炸药比起黑火药的爆炸能提升也不过是4倍左右,这就已经是一场“革命”了。
作为广岛原子弹引发临界核裂变效果“扳机”的奥克托今炸药,其爆能也不过是1.7倍TNT的威力。
全氮材料家族的另一位同胞,1998年美国合成的N5+盐材料以不到0.2克的质量炸烂了一个通风橱,把实验室炸的跟被鬼子扫荡过一样。但是因为形成的化合物氮含量下降,还是不够完美,而此次的N5-盐若与氮阳离子合成纯氮材料,威力将更上一层楼
这一提升看似并不震撼,但是其足以让现今使用的武器性能得到跨越性的提升。试想看,这甚至可以让人手一发的80毫米火箭筒达到超过120迫击炮弹(装药量相当于155毫米榴弹)的杀伤威力。
在用作火箭推进剂时,全氮高能材料能显著延长发动机的工作时间(即提高比冲),更高比冲的固体发动机在不增加导弹体积的情况下,将显著提升导弹射程。结合大威力高能炸药,现有体系下的中距弹就可能达到霹雳-1X的性能水平,具备超远射程和对超音速巡航目标的杀伤能力,大规模远距离空中“排队枪毙”不再是梦想。或者小型化的导弹也将具备不凡的作战能力,战斗机可以像战舰一样携带大量的导弹进行作战。
而最为可贵的,在发布在《科学》杂志上的论文中表现的合成路径看来,N5-其合成原料价格相当低廉。选用的材料中最贵的也不过就是甘氨酸亚铁[Fe(Gly)2]。
现有高能炸药中,哪怕是奥克托今炸药也因为成本高昂,与TNT混用并且只使用于导弹和水中兵器的高能战斗部上。如果全氮阴离子盐的合成产率等问题得到解决,其应用要比现有的各种硝基高能炸药更为广泛——甚至真有在“当量价格比”上超过TNT的可能。
而另一位上了《科学》杂志的金属氢,应该说,它的知名度比起N5-来说要高得多了,在我国科幻作家刘慈欣的小说《中国2185》中就作为高能汽车燃料出现过。
从1973年美国洛斯阿拉莫斯实验室开始,美国,苏联,包括日本都有报告声称发现了金属氢,然而并一直没有相关方面拿出实际证明。此次哈佛大学的团队在495万个大气压下制造的金属氢也还没有得到进一步的承认,因为金属氢得到的条件苛刻且不稳定,稍微减轻压力本身就升华消失,这种苛刻的条件也是真正制取金属氢的难度之一。
作为“梦幻炸药”,科学家们对于金属氢的性能早就有所分析,通过金属键键能等方式,金属氢预计在升华中可以达TNT的爆炸能量的35倍,远远大于任何化学能源的能量密度,仅次于核反应。爆速超过15000米每秒。如果作为火箭燃料,比冲可能超过1700秒,这一时间甚至可以让单级火箭突破大气层,大大减轻人类探索太空的难度。
不止如此,金属氢的特殊结构带来的金属性质,更使其可能成为常温(290K,16.85℃)下的超导材料,如果应用于电力传输,将带来革命性作用。
全氮含能材料作为火箭推进级的比冲也能达到400-500秒级,虽然不如金属氢,但是其更具备实用价值,对于高能材料而言,“送人上天”比起“送人上西天”对人类才更有意义。两者都不仅仅是人类武器的进步,更是人类改变世界改变自身的进步
而所谓“氢弹扳机”的说法,现有裂变弹作为引发聚变反应的扳机不仅仅是因为核弹的爆炸能力,还包括裂变反应中的中子射流作用。这一点无论是N5-还是金属氢都无法做到。高能炸药应用于原子弹引爆还有可能,应用于“洁净氢弹”还是指望激光点火技术吧——在这个领域,高能含能物质也一样大有用武之地
迄今为止,核反应仍然是人类掌握最剧烈的能量释放方式,想要代替核弹的地位。
从爆能上看,金属氢以至少35倍TNT能量释放绝对性胜出。从爆速等指标上看,金属氢也是略胜一筹。环保方面,双方的爆炸残留物一个是氮气一个是氢气,都属于洁净无污染,绝对的“绿色炸药”。从安全性上来看,全氮炸药可能/还可以摸摸,金属氢的脾气就很难说了。
在航天方面的应用,金属氢以预计超出三倍比冲数值取胜。在其他应用前景方面,金属氢成为常温超导体的可能性也极具优势。
无论如何,两者都给人类开拓了新技术领域的前景。南理工直接叩开了全氮超高能含能材料的大门,而哈佛大学则走入了一条金属性非金属化合物的漫长小径。无论是哪一种都是值得敬仰的研究成果,都将为人类的未来而造福。
原创首发,侵权必究。